On the Problem of Maximal $$L^q$$-regularity for Viscous Hamilton–Jacobi Equations
نویسندگان
چکیده
For $q>2, \gamma > 1$, we prove that maximal regularity of $L^q$ type holds for periodic solutions to $-\Delta u + |Du|^\gamma = f$ in $\mathbb{R}^d$, under the (sharp) assumption $q d \frac{\gamma-1}\gamma$.
منابع مشابه
Global regularity for the viscous Boussinesq equations
∇·u=0 Here is the temperature, u=(u1; u2) is the velocity, p is the pressure. In Reference [1], Pumir and Siggia observed that the cap of a symmetric rising bubble collapses in a nite time. In contrast, E and Shu [2] reported that the motion of the bubble cap is a very unlikely candidate for nite time singularity formation. In this paper, we prove the global regularity for the viscous Boussines...
متن کاملMaximal Lp-Regularity for Stochastic Evolution Equations
We prove maximal L-regularity for the stochastic evolution equation
متن کاملMaximal regularity for nonautonomous evolution equations
We derive sufficient conditions, perturbation theorems in particular, for nonautonomous evolution equations to possess the property of maximal Lp regularity. 1991 Mathematics Subject Classification. 35K90, 47D06.
متن کاملMaximal L-regularity for Stochastic Evolution Equations
We prove maximal Lp-regularity for the stochastic evolution equation{ dU(t) +AU(t) dt = F (t, U(t)) dt+B(t, U(t)) dWH(t), t ∈ [0, T ], U(0) = u0, under the assumption that A is a sectorial operator with a bounded H∞calculus of angle less than 1 2 π on a space Lq(O, μ). The driving process WH is a cylindrical Brownian motion in an abstract Hilbert space H. For p ∈ (2,∞) and q ∈ [2,∞) and initial...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Archive for Rational Mechanics and Analysis
سال: 2021
ISSN: ['0003-9527', '1432-0673']
DOI: https://doi.org/10.1007/s00205-021-01641-8